Here is the myth: Once you set the motor lattitude, don't ever change it.
Here is the reason why this is a myth: You have to set it correctly the first time!
How do you overcome this so that you set it correctly the first time?
First of all, you need to understand that the motor elevation the motor latitude angles add up to 90 degrees. Ok, that is simple.
Now, you have to know that your motor latitude must be set to the same degree as your site latitude coordinate. If you live at 87.4 W longitude / 42.5 N latitude, then you must set your motor latitude to 42.5 degrees.
Now, why is this a problem for so many people? It is because of two items...
1] The mast or post that the motor is attached / mounted to is not plumb. This screws all angles period! You simply cannot start with this condition. Reset the mast properly to correct this problem.
2] The angle markers on the motor bracket are not refined or precise enough to determine if you are truly set at 42.5 degrees latitude. You may be at 42.3 or 42.6 or 42.7 degrees. How will you judge this accurately so that you know you are right on the mark?
Ok, what needs to be done in the case of item #2 is to remove the dish and motor tube from the motor. Then, slap a inclinometer (a good quality one) on the belly of the motor and read out the degree shown. This is going to be the motor ELEVATION! Now, remember that I said that elevation + latitude = 90 degrees. You want to set the motor LATITUDE to your site's LATITUDE.
However, the inclinometer is reading motor ELEVATION. Therefore, you must subract that from 90 degrees to know the latitude angle that you are setting the motor to.
In this scenario or example, we want the motor latitude to be 42.5 degrees. So, set the motor ELEVATION as read from the inclinometer to read 47.5 degrees and you will then be correct. 90 - 42.5 = 47.5.
Now, when you have this latitude angle set, you will know that it is correct and NOW you do not move it (ever).
The biggest problem with this is that it is hard to judge if you are attaching the inclinometer on the motor belly properly to get an accurate reading. You cannot really do this with the dish reflector attached nor with the motor tube attached. This is a preliminary step that must be done prior to attaching those components.
The inclinometer must set fully flush and parallel to the flat bottom of the motor housing. Motors may vary in style and make this more difficult if they have raised areas on the belly of the motor. Keep this in mind and apply the inclinometer as needed to read the accurate motor elevation. The seam along the side of the motor where the upper and lower shells of the motor housing meet is an excellent leveling marker, if you can figure out how to utilize it.
A highly accurate inclinometer will allow you to get the motor latitude set correctly if you do it right.
Once this is accomplished, then DO NOT CHANGE IT EVER.
The motor latitude and the plumb of the mast are two of the constants that you must adhere to. If you get these two items set correctly, then you only need to set the dish elevation and the motor azimuth variables to dial in a satellite signal.
The dish elevation and the motor azimuth are the only two angles that you should adjust to peak on a signal. You might need to dabble slightly with the LNBF polarization and focal point (distance from the dish). Adjusting the LNBF is the last step as it would provide the very finest tuning portion of the setup.
The LNBF polarization should be set to ZERO degrees on a motorized system and the focal distance I would personally set to the middle of the range and adjust it later for best signal reception. You souldn't have to worry much about the focal distance unless you are trying to pull in a very weak signal for your location. 90%+ of the time, it is just right.
This isn't too difficult, but you have to have a mental picture of what the signals / angles are doing in order for it all to make sense. If you are adept at framing a house, or a roof and trusses, you will understand angles in this way just fine. Geometry is your frend!
RADAR
Here is the reason why this is a myth: You have to set it correctly the first time!
How do you overcome this so that you set it correctly the first time?
First of all, you need to understand that the motor elevation the motor latitude angles add up to 90 degrees. Ok, that is simple.
Now, you have to know that your motor latitude must be set to the same degree as your site latitude coordinate. If you live at 87.4 W longitude / 42.5 N latitude, then you must set your motor latitude to 42.5 degrees.
Now, why is this a problem for so many people? It is because of two items...
1] The mast or post that the motor is attached / mounted to is not plumb. This screws all angles period! You simply cannot start with this condition. Reset the mast properly to correct this problem.
2] The angle markers on the motor bracket are not refined or precise enough to determine if you are truly set at 42.5 degrees latitude. You may be at 42.3 or 42.6 or 42.7 degrees. How will you judge this accurately so that you know you are right on the mark?
Ok, what needs to be done in the case of item #2 is to remove the dish and motor tube from the motor. Then, slap a inclinometer (a good quality one) on the belly of the motor and read out the degree shown. This is going to be the motor ELEVATION! Now, remember that I said that elevation + latitude = 90 degrees. You want to set the motor LATITUDE to your site's LATITUDE.
However, the inclinometer is reading motor ELEVATION. Therefore, you must subract that from 90 degrees to know the latitude angle that you are setting the motor to.
In this scenario or example, we want the motor latitude to be 42.5 degrees. So, set the motor ELEVATION as read from the inclinometer to read 47.5 degrees and you will then be correct. 90 - 42.5 = 47.5.
Now, when you have this latitude angle set, you will know that it is correct and NOW you do not move it (ever).
The biggest problem with this is that it is hard to judge if you are attaching the inclinometer on the motor belly properly to get an accurate reading. You cannot really do this with the dish reflector attached nor with the motor tube attached. This is a preliminary step that must be done prior to attaching those components.
The inclinometer must set fully flush and parallel to the flat bottom of the motor housing. Motors may vary in style and make this more difficult if they have raised areas on the belly of the motor. Keep this in mind and apply the inclinometer as needed to read the accurate motor elevation. The seam along the side of the motor where the upper and lower shells of the motor housing meet is an excellent leveling marker, if you can figure out how to utilize it.
A highly accurate inclinometer will allow you to get the motor latitude set correctly if you do it right.
Once this is accomplished, then DO NOT CHANGE IT EVER.
The motor latitude and the plumb of the mast are two of the constants that you must adhere to. If you get these two items set correctly, then you only need to set the dish elevation and the motor azimuth variables to dial in a satellite signal.
The dish elevation and the motor azimuth are the only two angles that you should adjust to peak on a signal. You might need to dabble slightly with the LNBF polarization and focal point (distance from the dish). Adjusting the LNBF is the last step as it would provide the very finest tuning portion of the setup.
The LNBF polarization should be set to ZERO degrees on a motorized system and the focal distance I would personally set to the middle of the range and adjust it later for best signal reception. You souldn't have to worry much about the focal distance unless you are trying to pull in a very weak signal for your location. 90%+ of the time, it is just right.
This isn't too difficult, but you have to have a mental picture of what the signals / angles are doing in order for it all to make sense. If you are adept at framing a house, or a roof and trusses, you will understand angles in this way just fine. Geometry is your frend!
RADAR
Last edited: