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Abstract— A method of moment based analysis of the feed network of a waveguide fed two
dimensional array antennas has been presented using Multi Cavity Modeling Technique (MCMT)
in transmitting mode. The proposed power divider is unlikely to the family of Tees. The output
ports are in the same planes as the input which is an advantage for phased array applications.
The proposed 1:2 power divider has good agreement with the theory, CST microwave studio
simulated and measured data over entire X-band frequency range.

1. INTRODUCTION

Low cost, Low Profile two dimensional scanning phased array antennas have wide application in Low
Earth Orbit (LEO), Middle Earth Orbit (MEO) and Geostationary Earth Orbit (GEO) satellite
communication. Multi-port Power divider has already found wide applications in phased array
techniques. Basic requirements for the considered class of beam forming networks are: Low losses
in the operational frequency band, the high accuracy of power splitting (With necessary amplitude
and phase distribution at the outputs). Today, a large number of configurations and power divider
constructions are known [1–6]. However the problems of theoretical analysis of high quality power
divider remain unsolved. Effort has been made to miniaturize (dimensionally) a 1:2 power divider
with wide band frequency response.

Present work was performed for theoretical analysis of a 1:2 power divider for phased array
application using Multi Cavity Modeling Technique (MCMT) [7] and compared with the practical
data. The technique involves in replacing all the apertures and discontinuities of the waveguide
structures, with equivalent magnetic current densities so that the given structure can be analyzed
using only Magnetic Field Integral Equation (MFIE). Since only the magnetic currents present
in the apertures are considered the methodology involves only solving simple magnetic integral
equation rather than the complex integral equation involving both the electric and magnetic current
densities.

Figure 1: Photograph of a 1:2 power divider.

2. FORMULATION OF THEORY

The photograph of a basic 1:2 power divider is shown in Figure 1 and with its cavity modeling
and details of region which shows that the structures have 3 waveguide regions and 1 cavity region
shown in Figure 2. The interfacing apertures between different regions are replaced by equivalent
magnetic current densities. The electric field at the aperture is assumed to be



362 PIERS Proceedings, Cambridge, USA, July 2–6, 2008

Figure 2: Cavity modeling and details of regions of a basic 1:2 power divider.

~E = ûx

M∑

p=1

Epxepx + ûy

M∑

p=1

Epyepy (1)

where the basis function ep (p = 1, 2, 3, . . . , M) are defined by

ei, y
p =

{
sin

{ pπ
2L (x− xw + L)

}
for xw−L ≤ x ≤ xw + L

yw−W ≤ y ≤ yw + W
0 elsewhere

(2a)

ei, x
p =

{
sin

{ pπ
2W (y − yw + W )

}
for xw−L ≤ x ≤ xw + L

yw−W ≤ y ≤ yw + W
0 elsewhere

(2b)

In the above expressions:

• L = a, W = b, xw = 0 and yw = 0 for aperture 1, aperture 2 and aperture 3 with respect to
waveguide co-ordinate.

• L = a, W = b, xw = 0 and yw = 0 for aperture 1 with respect to cavity axis.

• L = a, W = b, xw = D + a and yw = 0 for aperture 2 with respect to cavity axis.

• L = a, W = b, xw = D − a and yw = 0 for aperture 3 with respect to cavity axis.

• where a = 22.86mm, b = 10.16mm, D = 1.27 mm.

• where 2D is the distance between waveguide-2 and waveguide-3.

The X-component of incident magnetic field at the aperture for the transmitting mode is a
dominant TE10 mode and is given by

H inc
x = −Y0 cos

(πx

2a

)
e−jβz

3. EVALUATION OF THE INTERNALLY SCATTERED FIELD

The internally scattered field is obtained by using the modal expansion approach presented in [8].
The internally scattered electric field is given in [9]. Once the electric field is obtained, the corre-
sponding magnetic fields can be derived.

The modal voltages are given by (considering only ei, tn
pq part of the aperture electric field):

V e
mn =

√
2ab [Epx −Epy] (3)

V m
mn = 0 (4)
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The x-component of internally scattered magnetic field can be obtained as,

Hwvg
x

(
Ei, y

p

)
= Hwvg

x

(
M i, x

p

)
=




−

∞∑

m=1

Y e
m0 sin

{mπ

2a
(x + a)

}
for p = m and n = 0

0 Otherwise
(5)
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x

(
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p

)
= −Hwvg

x

(
M i, y

p

)
= 0 (6)

Hwvg
y
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)
= Hwvg

y

(
M i, x

p

)
= 0 (7)
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= −Hwvg
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(
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p
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=


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n=0

Y e
0n sin

{nπ

2b
(y + b)

}
for p = n and m = 0

0 Otherwise
(8)

4. EVALUATION OF THE CAVITY SCATTERED FIELD

The tangential components of the cavity scattered fields are derived in [5]. The final form of the
tangential components of the cavity scattered field will be same as given in [6], where Lc is the
length and Wc is the width of the cavity. Li and Wi are the half length and half width of ith
aperture.

Hx
cavj

(Mx
i ) = −jωε

k2

∞∑

m=1

∞∑

n=0

εmεnLiWi

2LcWc

{
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(
mπ
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)2
}
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{
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}

× cos
{

nπ
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}
cos

{
nπ
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}
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Fx (p)
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{
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(9)
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}
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{
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(10)
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(12)

At the region of the window, the tangential component of the magnetic field in the aperture should
be identical and applying the proper boundary conditions at the aperture the electric fields can be
evaluated [6].
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5. IMPOSITION OF THE BOUNDARY CONDITION

At the region of the window, the tangential component of the magnetic field in the aperture should
be identical and is given by:

Hwvg1
x (Mx

1 ) + Hcav
x (Mx

1 ) + Hwvg1
x (My

1 ) + Hcav
x (My

1 )

− Hcav
x (Mx

2 )−Hcav
x (My

2 )−Hcav
x (Mx

3 )−Hcav
x (My

3 ) = 2H inc
x (13)
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y (Mx
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y (Mx
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y (My
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3 ) = 0 (18)

6. SOLVING FOR THE ELECTRIC FIELD

To determine the electric field distribution at the window aperture, it is necessary to determine
the basis function coefficients E

i, x/y
p at both the apertures. Since the each component of the

field is described by M basis functions, 6M unknowns are to be determined from the boundary
conditions. The Galerkin’s specialization of the method of moments is used to obtain 6M-different
equations from the boundary condition to enable determination of E

i, x/y
p [10]. The weighting

function w
i, x/y
q (x, y, z) is selected to be of the same form as the basis function e

i, x/y
p . The weighting

function is defined as follows:

wi, y
q =

{
sin

{ qπ
2L (x− xw + L)

}
for xw − L ≤ x ≤ xw + L

yw −W ≤ y ≤ yw + W
0 elsewhere

(19a)

wi, x
q =

{
sin

{ qπ
2W (y − yw + W )

}
for xw − L ≤ x ≤ xw + L

yw −W ≤ y ≤ yw + W
0 elsewhere

(19b)

The inner product is defined by

〈H, wq〉 =
∫∫

Aperture

H · wqdξdψ (20)

Using the boundary condition given by Equations (13) to (18) and the definition of Equation (20),

〈{Hwvg1
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1 )}, w1, y
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〈{Hwvg1
y (Mx

1 ) + Hcav
y (Mx

1 )}, w1, x
q 〉+ 〈{Hwvg1

y (My
1 ) + Hcav

y (My
1 )}, w1, x

q 〉 − 〈Hcav
y (Mx

2 ), w1, x
q 〉

− 〈Hcav
y (My

2 ), w1, x
q 〉 − 〈Hcav

y (Mx
3 ), w1, x

q 〉 − 〈Hcav
y (My

3 ), w1, x
q 〉 = 0 (22)



Progress In Electromagnetics Research Symposium, Cambridge, USA, July 2–6, 2008 365

− 〈
Hcav

x (Mx
1 ) , w2, y

q

〉− 〈
Hcav

x (My
1 ) , w2, y

q

〉
+

〈{
Hcav

x (Mx
2 ) + Hwvg2

x (Mx
2 )

}
, w2, y

q

〉

+
〈{

Hcav
x (My

2 )+Hwvg2
x (My

2 )
}

, w2, y
q

〉
+

〈
Hcav

x (Mx
3 ) , w2, y

q

〉
+

〈
Hcav

x (My
3 ) , w2, y

q

〉
= 0 (23)

− 〈
Hcav

y (Mx
1 ) , wqy, 2

〉− 〈
Hcav

y (My
1 ) , w2, x

q

〉
+

〈{
Hcav

y (Mx
2 ) + Hwvg2

y (Mx
2 )

}
, w2, x

q

〉

+
〈{

Hcav
y (My

2 )+Hwvg2
x (My

2 )
}

, w2, x
q

〉
+

〈
Hcav

y (Mx
3 ) , w2, x

q

〉
+

〈
Hcav

y (My
3 ) , w2, x

q

〉
= 0 (24)

− 〈
Hcav

x (Mx
1 ) , w3, y

q

〉− 〈
Hcav

x (My
1 ) , w3, y

q

〉
+

〈
Hcav

x (Mx
2 ) , w3, y

q

〉
+

〈
Hcav

x (Mx
2 ) , w3, y

q

〉

+
〈{

Hcav
x (Mx

3 )+Hwvg3
x (Mx

2 )
}

, w3, y
q

〉
+

〈{
Hcav

x (My
3 ) + Hwvg3

x (My
3 )

}
, w3, y

q

〉
= 0 (25)

− 〈
Hcav

y (Mx
1 ) , w3, x

q

〉− 〈
Hcav

y (My
1 ) , w3, x

q

〉
+

〈
Hcav

y (Mx
2 ) , w3, x

q

〉
+

〈
Hcav

y (Mx
2 ) , w3, x

q

〉

+
〈{

Hcav
y (Mx

3 )+Hwvg3
y (Mx

2 )
}

, w3, x
q

〉
+

〈{
Hcav

y (My
3 ) + Hwvg3

y (My
3 )

}
, w3, x

q

〉
= 0 (26)

where the elements of the moment matrices are derived as follows:

〈
H inc

x , w1, y
q

〉
=

{ −2abY0 for q = 1
0 Otherwise (27)

〈
Hwvg

x (Mx) , wi, y
q

〉
=

{ −2abY e
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where suffix ‘s’ and ‘o’ represents the source and observation aperture dimensions respectively.
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Rewriting Equations (27) and (35) in the matrix form, for all p and q:



[Y xx
11 ] [Y xy

11 ] − [Y xx
12 ] − [Y xy

12 ] − [Y xx
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13 ]

− [Y xx
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22 ] [Y yx

23 ] [Y yy
23 ]

− [Y xx
31 ] − [Y xy
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32 ] [Y xy
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33 ]
− [Y yx
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33 ]



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}
{
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=
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

2
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x

}
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{0}
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


(36)

Figure 3: Photograph of arrangements of H-plane bends for measurement purpose.

7. REFLECTION COEFFICIENT AND TRANSMISSION COEFFICIENT

The procedure for derivation of reflection and transmission coefficients is given in [11]. Following
the same procedure the expressions for Γ and T is given by:

Γ =
E1

y + E2
y

Einc
y

= −1− E1, y
1 (37)

T21/31 =
Etransmitted

y

Einc
y

= −E
2/3, y
1 (38)

8. NUMERICAL RESULTS AND DISCUSSION

Theoretical data for the magnitude of scattering parameters for an H-plane 1:2 WR-90 waveguide
power divider at X-band has been compared with CST Microwave Studio simulated data and
measured data in Figure 4.

Figure 4: Comparison of theoretical, CST microwave studio simulated and measured data for an H-plane
1:2 WR-90 waveguide power divider for 2t = 12.2mm.
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MATLAB codes have been written for analyzing the structure and numerical data have been
obtained after running the codes. The structure was also simulated using CST microwave studio
while measurements were performed using Agilent 8410C Vector Network Analyzer. The theory
has been validated by the excellent agreement between the theoretical, CST Microwave Studio
simulated data and Measured Data in Figure 4. In Figure 5, S11 is presented for various values of
the length of cavity (2t) and in Figure 6 for S21 and S31. The scattering parameters for the circuit,
when excited through port -2 and port -3 have not been presented in this section because these are
less important in the study of a power divider.

Figure 5: S11 of an H-plane 2:1 WR-90 waveguide power divider with 2t = 5mm, 10 mm, 15mm and 20 mm.

Figure 6: S21 and S31 of an H-plane 2:1 WR-90 waveguide power divider with 2t = 5 mm, 10 mm, 15mm,
and 20 mm.
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